Master's Degree Program in Manufacturing Engineering Technology Annual Assessment Report for 2010-11

I. Introduction

The master's degree program in Manufacturing Engineering Technology offers courses in four curriculum content areas (CCA):

- a. engineering science & design technology
- b. manufacturing software & computer integration
- c. advanced manufacturing materials & process technology
- d. engineering management process

The program was approved by the Oregon Higher Education Board in 2005. It offers master's degree at three locations of OIT, namely Klamath Falls, Portland and Seattle. The program requires 45 credit hours of graduate work. In addition to the CCA credit hours, students must complete 12 credits toward thesis, or 3 to 9 credits toward an approved final project and 3 credits in graduate seminars. Students must take at least one course in each of the four CCAs and three courses in at least one CCA.

II. Program Mission, Objectives and Learning Outcomes

The faculty in the master's degree program in Manufacturing Engineering Technology reviewed the current mission, objectives, and learning outcomes during the 2010-11 academic year. The current version is listed below:

Program Mission

The mission of the Manufacturing Engineering Technology Master of Science Degree program is to produce engineering graduates with an advanced technical education that allows them to take on leadership roles in globally competitive manufacturing industries.

Educational Objectives

- 1. Provide manufacturing and non-manufacturing engineers with advanced technical and managerial skills that allow them to be the leaders in manufacturing industries.
- 2. Expand graduates' expertise through industry-based applied research, lab-based design and analysis.
- 3. Strengthen graduates' ability to work productively in a global manufacturing environment.

Learning Outcomes

The graduates of the Master of Science Degree program in Manufacturing Engineering Technology must demonstrate:

1. The ability to solve engineering problems using advanced mathematical, computational, and analytical methods appropriate to the discipline.

- 2. The ability to improve current manufacturing processes using a variety of techniques, including product life cycle management, quality and inventory control, and planning techniques.
- 3. The ability to use current computer tools for manufacturing problems.
- 4. The ability to plan and conduct professional activities (including manufacturing projects) in one or more areas of specialization in the discipline by using advanced knowledge.
- 5. Knowledge related to global awareness.
- 6. The ability to communicate effectively in both written and oral forms.

III. Three-Year Cycle for Assessment of Student Learning Outcomes

The faculty agreed that we will have six main outcomes and will assess one or two each year on a three-year cycle, as listed in Table 1 below.

Learning Outcomes	'07-08	'08-09	'09-10	'10-11	'11-12	'12-13
1.Ability to solve engineering	Х			Х		
problems using advanced						
mathematical, computational,						
and analytical methods						
appropriate to the discipline.						
2.Ability to improve current			Х			Х
manufacturing processes using a						
variety of techniques including						
product life cycle management,						
quality and inventory control and						
planning techniques.						
3. The ability to use current		Х			Х	
computer tools for manufacturing						
problems.						
4. Ability to plan and conduct			Х			Х
professional activities (including						
manufacturing projects) in one or						
more areas of specialization in the						
discipline by using advanced						
knowledge.						
5.Knowledge related to global		Х			Х	
awareness.						
6. Ability to communicate	Х			Х		
effectively in both written and						
oral forms.						

Table 1. Master's Program in Manufacturing Engineering Technology Assessment Cycle.

IV. Summary of 2010-11 Assessment Activities

Manufacturing faculty conducted formal assessment of two student learning outcomes during 2010–2011, as described below. The faculty assessed several graduate courses.

Since there are currently only a small group of graduate students in each course, these results should be viewed with that in mind.

SLO #1. Ability to solve engineering problems using advanced mathematical, computational, and analytical methods appropriate to the discipline.

The faculty assessed this outcome using the following performance criteria:

- 1) Computation accuracy in mid-term exam
- 2) Ability to use theoretical principles
- 3) Ability to apply mathematical techniques
- 4) Ability to relate theoretical concepts requiring mathematical analysis to practical problems

For Klamath Falls, the faculty used MFG 598 Automated Tool Path Development, Fall Term 2010, taught by Professor David Culler, to assess this outcome. There were 6 students involved in this assessment. The results are shown in Table 2.

			Minimum	
Performance	Assessment	Measurement	Acceptable	
Criteria	Method	Scale	Performance	Results
Computation	midterm exam; applied	1 - 4	80% at 3 or 4	Met criteria
accuracy in	problems that require	proficiency		(every
mid-term	application of	scale		student got 3
exam	calculations and			or more on
	manufacturing theory			the score)
Ability to use	midterm exam; applied	1 - 4	80% at 3 or 4	Met criteria
theoretical	problems that require	proficiency		(every
principles	application of	scale		student got 3
	calculations and			or more on
	manufacturing theory			the score)
Ability to	midterm exam; applied	1 - 4	80% at 3 or 4	Met criteria
apply	problems that require	proficiency		(every
mathematical	application of	scale		student got 3
techniques	calculations and			or more on
	manufacturing theory			the score)
Ability to	midterm exam; applied	1 - 4	80% at 3 or 4	Met criteria
relate	problems that require	proficiency		(every
theoretical	application of	scale		student got 3
concepts	calculations and			or more on
requiring	manufacturing theory			the score)
mathematical				
analysis to				
practical				
problems				

Table 2. Assessment Results for SLO #1 in MFG 598, fall 2010, Klamath Campus

Discussion of the assessment result: all students received a three or higher on each performance criteria; the criteria were met at Klamath Falls campus.

For the Seattle campus, the faculty used MFG 597, Applied Finite Element Analysis for the fall term to address the outcome. But due to unforeseen changes in leadership at the Seattle campus assessment data was incomplete and therefore the results were unusable for sound assessment although this data is available. There is a current search in progress to rebuild the structure of the program at the Seattle location. Assessment plans are in place for assessment activities to resume in the 2011-12 academic year.

For the Portland Campus, the faculty used MFG596 Advanced Design of Pressure Vessels to assess this outcome in fall 2010. There were 3 students involved in the assessment. The results are shown in Table 3.

			Minimum	
Performance	Assessment	Measurement	Acceptable	
Criteria	Method	Scale	Performance	Results
Computation	Mid-term exam	1-4	80% at 3 or 4	Met criteria
accuracy in		proficiency		(every
mid-term		scale		student got 3
exam				or more on
				the score)
Ability to use	Mid-term exam	1 - 4	80% at 3 or 4	Met criteria
theoretical		proficiency		(every
principles		scale		student got 3
				or more on
				the score)
Ability to	Mid-term exam	1 - 4	80% at 3 or 4	Met criteria
apply		proficiency		(every
mathematical		scale		student got 3
techniques				or more on
				the score)
Ability to	Mid-term exam	1 - 4	80% at 3 or 4	Met criteria
relate		proficiency		(every
theoretical		scale		student got 3
concepts				or more on
requiring				the score)
mathematical				
analysis to				
practical				
problems				

Table 3. Assessment Results for SLO #1 in MFG596 Advanced Design of Pressure Vessels fall 2010, Portland Campus

Discussion of the assessment result: all students received a three or higher on each performance criteria; the criteria were met at Portland campus.

SLO #6. Ability to communicate effectively in both written and oral forms.

The faculty assessed this outcome using the following performance criteria:

- 1) Clearness and conciseness of summary of understanding of the projects
- 2) Knowledge of the subject
- 3) Presentation organization
- 4) Quality in delivery and discussion

For Klamath Falls, the faculty used MFG 598 Automated Tool Path Develop, Fall Term 2010, taught by Professor David Culler, to assess this outcome. There were 8 students involved in this assessment. The results are shown in Table 4.

			Minimum	
Performance	Assessment	Measurement	Acceptable	
Criteria	Method	Scale	Performance	Results
Clearness and	presentation and	1 - 4	80% at 3 – 4	Met criteria
conciseness of	accompanying report	proficiency		(every
summary of		scale		student got 3
understanding				or more on
of the projects				the score)
Knowledge of	presentation and	1 - 4	80% at 3 – 4	Met criteria
the subject	accompanying report	proficiency		(every
		scale		student got 3
				or more on
				the score)
Presentation	presentation and	1 - 4	80% at 3 – 4	Met criteria
organization	accompanying report	proficiency		(every
		scale		student got 3
				or more on
				the score)
Quality in	presentation and	1 - 4	80% at 3 – 4	Met criteria
delivery and	accompanying report	proficiency		(every
discussion		scale		student got 3
				or more on
				the score)

Table 4. Assessment Results for SLO #6 in MFG 598, fall 2010

Discussion of the assessment result: all students received a three or higher on each performance criteria; the criteria were met at Klamath Falls campus.

For Seattle campus, the faculty used MFG 597, Applied Finite Element Analysis for the fall term to address the outcome. But due to unforeseen changes in leadership at the Seattle campus assessment data was incomplete and therefore the results were unusable for sound assessment although this data is available. There is a current search in progress

to rebuild the structure of the program at the Seattle location. Assessment plans are in place for assessment activities to resume in the 2011-12 academic year.

For Portland, faculty used MFG 596 Adv Design of Mfg Pressure Vessels to assess this outcome. There were 3 students involved in the assessment. The results are shown in Table 5.

			Minimum	
Performance	Assessment	Measurement	Acceptable	
Criteria	Method	Scale	Performance	Results
Clearness and	The multivolume	1 - 4	80% at 3 – 4	Met criteria
conciseness of	ASME PV Code was	proficiency		(every
summary of	the basis of class	scale		student got 3
understanding	discussion and written			or more on
of the projects	homework and mid-			the score)
	term exam			
Knowledge of	The multivolume	1 - 4	80% at 3 – 4	Met criteria
the subject	ASME PV Code was	proficiency		(every
	the basis of class	scale		student got 3
	discussion and written			or more on
	homework and mid-			the score)
	term exam			
Presentation	The multivolume	1 - 4	80% at 3 – 4	Met criteria
organization	ASME PV Code was	proficiency		(every
	the basis of class	scale		student got 3
	discussion and written			or more on
	homework and mid-			the score)
	term exam			
Quality in	The multivolume	1 - 4	80% at 3 – 4	Met criteria
delivery and	ASME PV Code was	proficiency		(every
discussion	the basis of class	scale		student got 3
	discussion and written			or more on
	homework and mid-			the score)
	term exam			

Table 5. Assessment Results for SLO #6 in MFG 596 Adv Design of Pressure Vessels, fall 2010, Portland Campus.

Discussion of the assessment result: all students received a three or higher on each performance criteria; the criteria were met at Portland campus.

V. Summary of Student Learning Outcomes

During the 2010-11 academic year, the faculty in the Master's Degree Program in Manufacturing Engineering Technology formally assessed the student learning outcomes summarized below.

SLO #1. Ability to solve engineering problems using advanced mathematical, computational, and analytical methods appropriate to the discipline.

Students met all performance criteria for this learning outcome. No further action is required at this time.

SLO #6. Ability to communicate effectively in both written and oral forms.

Students met all performance criteria for this learning outcome. No further action is required at this time.