PREAMBLE

This report was prepared as a partial requirement of CE601 Interchange Traffic Simulation at Portland State University (PSU). This is the second report prepared for this course and details the simulation of a diamond interchange and adjacent arterial intersections in Wilsonville, Oregon, USA; the first report involved the simulation of a single isolated intersection in Vancouver, Washington, USA.

1. INTRODUCTION

This study reports on the computerized microscopic simulation of a small suburban network centered on the diamond interchange of Interstate 5 and Wilsonville Road in northern Oregon. The results of the simulation are compared to traffic observations and to the results of procedures described in the Transportation Research Board's Highway Capacity Manual 2000.

The following section contains a description of VISSIM, the traffic simulation software used for this report. Section 3 describes the analysis network and the type of data that were collected on-site and the data that were acquired during multiple runs of the simulation software. Section 4 presents some key findings, such as travel times and lane group delays, resulting from this study.

Section 5 presents comments on the report's findings. Section 6 outlines topics for future research in the area of microscopic simulation of small networks. Appendix A outlines a procedure for determining the number of simulation runs required to achieve statistically reasonable predictions of measures of effectiveness of an intersection or system. Appendix B summarizes some of the recent literature related to microscopic simulation of traffic at interchanges and closely spaced intersections. Finally, Appendix C contains Highway Capacity Software (HCS) results.

2. SOFTWARE DESCRIPTION

The software used in the simulations described in both CE 601 reports is the VISSIM traffic simulation model. VISSIM [1,2] is an urban traffic and public transit operations software package produced by PTV Planung Transport Verkehr AG of Karlsruhe, Germany. The North American distributor for VISSIM is Innovative Transportation Concepts Inc. (ITC) of Corvallis, Oregon, USA. VISSIM is an acronym for the German words "Verkehr in Städten – Simulation" which loosely translates to English as "traffic in towns – simulation". VISSIM is a computerized stochastic microscopic, time step, and behavior based simulation model. The current (December 2001) version of VISSIM is 3.60, although version 3.50 was used for the study described herein.

VISSIM is capable of modeling the movements of automobiles, trucks, light and heavy rail trains, bicycles, and pedestrians on a detailed network of streets, railroads, and sidewalks [2]. The VISSIM software package uses two distinct computer programs, the first is a traffic flow model that includes lane change and car following logic, the second is a traffic signal control emulator capable of reproducing both fixed time and actuated traffic signals [1]. The VISSIM software uses driver behavior models developed for urban behavior and freeway behavior by R. Wiedemann [3].

Wiedemann's traffic flow models are discrete, stochastic, time step based microscopic models. Central to both models is Wiedemann's car following logic, a graphic depiction of this logic is shown in Figure 1. A faster moving vehicle will decelerate as it approaches a slower vehicle. The premise is that the faster vehicle seeks a safe headway (AX) at which to follow the slower vehicle. The computer model begins to adjust the faster vehicle's speed when a perception threshold distance (SDX or SDV) is reached. At headway distances less than SDX/SDV, the faster vehicle will decelerate as the driver attempts to create a minimum safe headway (AX). Indeed, the driver may decelerate to the point that he is traveling slower than the lead vehicle (OPDV) and will accelerate to establish the desired headway. A series of oscillations will be modeled by VISSIM as the safe headway is approached. VISSIM models imperfect throttle control on all vehicles,

which creates a condition of constantly changing velocities and headways. The software user can change many of the parameters of the car following model which allows for the creation of a customized driver behavior model [3].

When traffic is modeled on multi-lane streets, VISSIM employs a rule based lane change model. A following vehicle will desire a lane change if either the lead vehicle is traveling slower than the following vehicle's desired speed or if the following vehicle is approaching a required turn. The lane change will be modeled only if the movement can be made safely [3].

Accurate microscopic simulation of traffic and traffic control within VISSIM requires that a detailed network be created. VISSIM employs a "link" based network system, where each link is coded with attributes such as number of lanes, lane width, and gradient. All network inputs are via a graphical user interface which allows the user to build the network by inserting a series of links and connectors. Although "freehand" drafting of the network is possible with VISSIM, network modeling is more efficient when an air photograph or line drawing is used as a background or underlay as shown in Figure 2. Network links are joined by connectors as shown in Figure 3, thereby eliminating the need for "nodes" that are used in many other traffic network software packages.

Traffic volumes are assigned to all links entering the network as shown in Figure 4. VISSIM loads the assigned traffic onto the network in a random manner using the Poisson distribution [1]. The user is able to specify the composition of the traffic stream (i.e. proportion of cars, trucks, heavy trucks etc.) as well as define distribution functions for desired speeds, weight, power, and acceleration/deceleration characteristics.

Intersection turning movements and other route based decisions are modeled in VISSIM by assigning proportions of each link's vehicular flow rate to each possible route as shown in Figure 5. The flow of vehicles though an intersection is governed by sign and/or signal control as shown in Figure 6. The red and green bars at the link ends on Figure 6 represent the current status of signal control on each lane approach. As the movement of each vehicle is simulated by the software, an animation of all vehicles' movements can be shown on the computer screen (see Figure 6). The blue objects represent automobiles and the black objects represent heavy trucks. On-screen evaluation of the animation allows the user to observe the traffic operations and make notes of such things as inefficient signal timings and offsets, queue spill-back, and weaving problems. A wide variety of data including route travel time, delay, queue length, and link volumes can be collected during each simulation run and stored in data files for off-line analysis.

3. WILSONVILLE ROAD / INTERSTATE 5 INTERCHANGE ANALYSIS

3.1 Project Location

The model network for this project is the area surrounding the intersection of Interstate 5 and Wilsonville Road located in the City of Wilsonville, Oregon as shown in Figure 7. The network includes the diamond interchange of Interstate 5 and Wilsonville Road as well as the Wilsonville Road intersections with the Oregon Electric Railroad, Boones Ferry Road, Parkway Avenue and Town Center Loop West.

3.2 Simulation Model Application

The geometry of the network was coded using a series of links and connectors as described in Section 2 of this report. The four signalized intersections in the network are all actuated and although VISSIM is capable of handling actuated signal control, actuation was deemed to be beyond the scope of this report. These four intersections were modeled as pre-timed by using observed PM peak period average cycle times observed on the site on December 13, 2001. It should be noted that in almost all cases, during the PM peak period, signal operation approached that of pre-timed signals with little variance in the observed phase lengths.

Ten (10) one hour simulation runs were completed. As an example of the measures of effectiveness that could be computed, route-specific travel times and delay at selected movements of the I-5 Ramp intersections with Wilsonville Road were collected during each of these simulation runs. Appendix A presents a procedure for determining the required number of simulation runs based on statistical parameters that may be obtained after a small number of initial runs. The stochastic nature of the VISSIM program necessitates that an adequate number of runs be executed and that results of one or a few runs should never be used in decision making.

4. RESULTS

4.1 Cycle Time Optimization

The four study intersections are currently actuated, in order to model these intersections as fixed-timed an average cycle time was determined by observing several cycles at each intersection. It was found that all four intersections operated on cycle length of approximately 90 seconds. To determine if this was an optimum cycle time, a battery of VISSIM runs were performed at cycle lengths of 60, 75, 90, and 115 seconds. Figure 8 shows the simulated interchange delay at these four trial cycle times. Interchange delay was computed by weighting the delay of each of the ramp intersection movements by their average proportion of total vehicles served. From this analysis, a 90 second cycle time appears to be a reasonable choice. This 90 second cycle length was used for all subsequent analyses.

4.2 Travel Time Comparison

Travel time data were collected during ten VISSIM simulation runs on three routes as shown in Figure 9. A small data set comprised of 5 actual network trips for each route was acquired at the site on December 13, 2001. The VISSIM simulation results appear to be good predictors of travel time for routes 1 and 3. The discrepancy in the simulated versus actual travel times on Route 2 may be a result of the fact that the intersections were simulated with fixed time coordinated signals while the actuated signals at times did not appear to be coordinated to provide progressive flow. The nature of the actuation logic may lead to a lack of coordination among the series of signals traversed in Route 2.

4.3 Average Vehicle Delay Comparison

Average vehicle delay data were collected during the ten VISSIM simulation runs for selected approaches of the two Interstate 5 ramp intersections with Wilsonville Road. For each simulated intersection movement a comparison delay was computed using procedures outlined in the Transportation Research Board's Highway Capacity Manual (HCM). Chapter 26 (Interchange Ramp Terminals) of the HCM2000 directs the user to evaluate delays at diamond interchanges using procedures from Chapter 16 (Signalized

Intersections) [4]. The HCM2000 Chapter 16 procedures form the basis for the "Signals" module of the HCS2000-Highway Capacity Software (HCS). Comparisons of lane group delays predicted by HCS and VISSIM are shown in Figure 10. Appendix C contains HCS output.

The HCM lane group incremental delay computation includes an Upstream Filtering or Metering Adjustment Factor (I) to account for the impact of metered arrivals from the upstream intersection. The HCM methodology directs that a factor of I=1.0 be used for isolated intersections where the arrival pattern would follow a random distribution. For the closely spaced intersections such as those in the study network, the HCM methodology directs that the I factor be computed using the following equation:

$$I = 1.0 - 0.91 X_u^{2.68}$$

Where X_u is approximated as the volume to capacity (v/c) ratio of the upstream through movement. While it appears logical that the delay of a lane group will be lower when the arrival rates are non-uniform and the signals are coordinated to take advantage of this type of arrival pattern, the HCM delay calculation methodology contains many empirical factors which makes the comparison of a single factor such as the Upstream Filtering or Metering Adjustment Factor to a fundamental principle of traffic flow very difficult.

Incremental delay is defined in the HCM2000 as "...delay due to non-uniform arrivals and temporary cycle failures ... as well as delay caused by sustained periods of oversaturation...". After viewing ten hours of VISSIM simulated flow, there were very few instances of oversaturation or cycle failures observed

Comparisons of HCS and VISSIM average vehicle delay at all eight movements reveal relatively small differences. While this in an interesting observation, it does not in itself prove the usefulness of either method. The HCS methodology for delay calculation is simply a "model" of traffic flow that could be described as deterministic and macroscopic.

4.4 Traffic Demand

The hourly traffic volumes used in sections 4.1-4.3 were based on PM peak hour vehicle volume data acquired by DKS Associates in May, 1999. This data came in the form of intersection turning movement counts for the six intersections in the network. To study how the VISSIM simulation program responds to changes in traffic demand, the network was loaded with different levels of traffic (Low, Medium, High, and Very High). These traffic levels correspond to 0.5, 0.75, 1.0 and 1.25 times the May, 1999 PM Peak hour volumes respectively.

Figure 11 shows the VISSIM simulated interchange delay at these four traffic levels. Interchange delay was again computed by weighting the delay of each of the ramp intersection movements by that movement's average proportion of total vehicles served. Average delays increased with increasing traffic, which is consistent with expectations. Of particular interest was the observation of the animation during the "Very High" traffic load. The animation showed that there were several instances when the queues of both eastbound and westbound Wilsonville Road traffic spilled back to limit movement at the adjacent ramp intersection. Any methodology that aims to accurately predict interchange delays at times heavy traffic flow must recognize the impact of queue spill-back.

5. CONCLUSIONS

This report examined the use of a computerized microscopic stochastic traffic simulation tool (VISSIM) as means of evaluating a small urban traffic network including a diamond Interstate Highway interchange. From the analysis of results, the following conclusions were drawn.

Simulated interchange delay results from the VISSIM model appear to be consistent with delays predicted by HCM2000 methodologies. Model to model comparisons in themselves are not entirely meaningful, however, it appears that the microscopic simulation and the animation that is inherent in the simulation may provide a good tool to evaluate the movement of traffic at diamond interchanges.

The importance of modeling nearby intersections that influence the actual diamond interchange intersections was clearly observed. The VISSIM model generates traffic according to a random distribution, therefore it is vital that the metering effects of nearby intersections be included in the analysis of an interchange.

The stochastic nature of the VISSIM simulation model will result in new results each time the model is seeded with a new random seed. It is vital, therefore, that a statistically sound method be followed in determining the required number of model runs. Appendix A presents a procedure for determining the required number of model runs.

6. FUTURE RESEARCH

The following areas appear to starting points for future research on traffic flow at diamond interchange and other closely spaced intersections.

- A more statistically rigorous comparison of modeled results to field data.
- A detailed analysis of the internal logic (car-following, gap acceptance, etc.) of the VISSIM to other models and a to field data related to this logic.
- Analyses incorporating actuation logic at signalized intersections.
- Extension of the analysis to include ramp metering.
- Extension of the analysis to include freeway weaving sections near the study interchange.

REFERENCES

- 1. PTV Planung Transport Verkehr AG, *VISSIM 3.50 User Manual*, Karlsruhe, Germany, 2000.
- 2. Bloomberg, L., and Dale, J. *A Comparison of the VISSIM and CORSIM Traffic Simulation Models*. Institute of Transportation Engineers Annual Meeting, August 2000.
- 3. PTV Planung Transport Verkehr AG, *VISSIM Traffic Flow Simulation Technical Description*, Karlsruhe, Germany, 2000.
- 4. Transportation Research Board. *Highway Capacity Manual*. Washington, D.C., 2000.
- 5. Hogg, R.V., and Tanis, E.A., *Probability and Statistical Inference* 4th *Edition*. Macmillan Publishing Company, New York, 1993.
- Moen, B., Fitts, J., Carter, D., and Ouyang, Y., A Comparison of the VISSIM Model to Other Widely Used Traffic Simulation and Analysis Programs. ITE 2000 Annual Meeting CD-ROM, Institute of Transportation Engineers, Nashville, Tennessee, 2000.
- 7. Lee, S., and Messer, C.J., *Assessment of Three Traffic Simulation Models for Diamond Interchange Analysis*. A Paper in CD-ROM of the 81st Annual Meeting of TRB, National Research Council, Washington, D.C., 2002
- Wang, Y., and Prevedouros, P.D., Comparison of INTEGRATION, TSIS/CORSIM, and WATSim in Replicating Volumes and Speeds on Three Small Networks. Transportation Research Record 1644, TRB, National Research Council, Washington, D.C., 1998, pp. 880-92.

LIST OF FIGURES

Figure 1	Graphical Depiction of Wiedemann's Car Following Model
Figure 2	VISSIM Screen Shot (link data)
Figure 3	VISSIM Screen Shot (link connection data)
Figure 4	VISSIM Screen Shot (vehicle input)
Figure 5	VISSIM Screen Shot (route data)
Figure 6	VISSIM Screen Shot (animation)
Figure 7	Wilsonville, Oregon Location Map
Figure 8	Cycle Length vs. Interchange Delay
Figure 9	Route Specific Travel Times
Figure 10	Delay at Selected Movements of I-5 Ramps and Wilsonville Road
Figure 11	Traffic Volume vs. Interchange Delay

Legend:

- AX: Minimum desired distance between the fronts of two successive vehicles in a standing queue.
- BX: Upper range of desired distance between the fronts of two successive vehicles in a standing queue.
- SDV: Action point where a driver consciously observes that he is approaching a slower car in front. SDV increases with increasing speed differences.
- CLDV Closing delta velocity, a factor applied to model additional deceleration by the usage of brakes.
- OPDV: Action point where the following driver notices that he is slower than the leading vehicle and starts to accelerate again.
- SDX: Perception threshold to model the maximum following distance. Approximately 150m.

Figure 1 Graphical Depiction of Wiedemann's Car Following Model [3]

Figure 2 VISSIM Screen Shot (link data)

Figure 3 VISSIM Screen Shot (link connection data)

Figure 4 VISSIM Screen Shot (vehicle input)

Figure 5 VISSIM Screen Shot (route data)

Figure 7 Wilsonville, Oregon Location Map

Figure 8 Cycle Length vs. Interchange Delay

Figure 9 Route Specific Travel Times Route 1-Green, Route 2-Gold, Route 3-Red

Figure 10 Delay at Selected Movements of I-5 Ramps and Wilsonville Road

Figure 11 Traffic Volume vs. Interchange Delay

APPENDIX A REQUIRED NUMBER OF SIMULATION RUNS

Due to the stochastic nature of the VISSIM program, each model run with identical operation conditions but with different random seed numbers will produce different results. It is prudent, therefor to execute a small number of simulation runs (say 10) and with the statistical estimators of this trial, compute according to commonly accepted statistical principles, the number of simulation runs required to meet a stated objective (i.e 80%, 90%, 95% etc. level of confidence).

Based on the theories of probability and statistics, the following equation [5] can be used to compute the required number of simulation runs.

$$n_r \ge \frac{s^2 z^2_{\alpha/2}}{\varepsilon^2}$$

Where:

 s^2 is the variance (generally based on a relatively small number of initial simulation runs) $z_{\alpha/2}$ is the threshold value for a 100(1- α) percent confidence interval

n_r is number of runs required

 ϵ is the maximum error of the estimate

Example:

The following delay data for the NB left movement at the NB I-5 Ramp Intersection with Wilsonville Road was determined from 10 runs of VISSIM Each value represents seconds of delay.

45.2
41.9
42.2
41.9
59.9
46.8
62.1
58
46.9
39.2

Mean of this data=48.4s

 s^2 of this data = 70.525 s^2

s=8.398s

 α =0.10 (corresponds with 90% confidence)

 $\alpha/2=0.05$ (corresponds with 90% confidence)

Z=1.645 (from statistical table [5])

 $\varepsilon = 1.5$ seconds (based on reasonable error of delay estimate [7])

$$n_r \ge \frac{s^2 z^2 \alpha_2}{\varepsilon^2} = \frac{(70.525)1.645^2}{1.5^2} \approx 85 \ runs$$

APPENDIX B LITERATURE REVIEW

Several recent papers discuss the use of VISSIM and other computerized microscopic traffic models as tools for the analysis of interchanges and closely spaced intersections in urban networks.

Moen et. al [6] compared VISSIM to two other popular simulation packages, CORSIM, and TRANSYT-7F. Although their study did not include a diamond interchange, the modeling of an area of downtown Dallas, Texas described in the paper included closely spaced intersections with queue spillback and heavy traffic volumes. Overall, they found that CORSIM and VISSIM are suitable for predicting measures of effectiveness of various type of intersections for planning and operational decisions. The authors discuss a salient fact inherent in the attempt to compare simulated traffic delay measures with field data - they explain that the "total delay" computed by the simulation software includes all forms of delay, including delay caused by traffic flow factors and geometric delay. This type of "total delay" data is very difficult to collect on real street networks. The dilemma of "how can I validate my model" is important as simulation becomes more popular and the demand for calibration or validation of microscopic simulation data becomes more widespread.

Lee and Messer [7] assessed three computer traffic simulation models, two microscopic (CORSIM and SimTraffic) and one macroscopic (Synchro), for diamond interchange analysis. Although VISSIM was not tested, comments pertaining to microscopic simulation would be of value. The researchers recommend that either of the microscopic models can be used for high-quality analysis of actuated diamond interchanges including those with queue spill-back. The researchers echo others in their call for a large number of simulation runs to produce acceptable estimates of measures of effectiveness.

Bloomberg and Dale [2] compare two microscopic computer traffic simulation models, CORSIM and VISSIM, on both a simple intersection and a congested urban network,

both in Seattle, Washington. They conclude that both models are useful for planning and operations level analyses. They make some comparisons of the microscopic simulation results to results of HCM2000 Methodology and conclude that areas with queue spill-back may not be suited for the HCM's macroscopic modeling techniques. The authors state that large numbers of simulation runs are required for the proper use of the model output and they encourage future research into comparisons of simulated results to field data.

Wang and Prevedouros [8] compare two microscopic computer traffic simulation models, CORSIM and WARSim, on three small urban networks, including a diamond interchange in Honolulu, Hawaii. The study networks had the advantage of being equipped with video surveillance equipment and freeway loop detectors. The authors found that ability to calibrate such measures as density and speed with "real" traffic data aided in their confidence in the results of the simulation. The authors caution that "default" parameter imbedded in simulation software may not always produce "reasonable" results.

APPENDIX C HIGHWAY CAPACITY SOFTWARE (HCS) RESULTS

HCS2000: Signalized Intersections Release 4.1b

Analyst: L Agency: P Date: 12 Period: 17 Project ID E/W St: Wi	indgren ortland /18/20(:00-18 : lsonvil	n d Stat D1 :00 Lle Ro	e Univ	versity	Ŧ	Int Are Jur Yea N/S	er.: I a Type isd: r: 1 St: SI	5 Nor : All 999 B Ran	rthramp l other mps of	s @Wi area 15	lson [.] Is	vill	e	
			SIG	NALIZI	ED IN	TERSE	CTION S	SUMMA	ARY					
	Eas	stboun		West	boun	d	Nort	thboi	ind	Sou	thbo	und		
	L	T	R	L	T	R	L	Т	R	L	Т	R		
No. Lanes LGConfig Volume Lane Width	1 L 455 3.6	2 T 412 3.6	0	0	2 T 433 3.6	0	1 L 346 3.6	0	1 R 336 3.6 202	0	0	0		
KIOK VOI	1		1				1		302					
Duration	0.25		Area T	'ype: /	All o	ther	areas							
				Sign	nal O	perat	ions	_						
Phase Comb EB Left	ination	n 1 P	2	3	4	 NB	Left	5 P	6	7	1	8		
Thru		Ρ	Ρ				Thru							
Right							Right	Ρ						
Peds							Peds							
WB Left						SB	Left							
Thru			P			!	Thru							
Right							Right							
Peds							Peds							
NB Right						EB	Right							
SB Right						WB	Right							
Green		28.0	32.0					18.0)					
Yellow		3.0	3.0					3.0						
All Red		1.0	1.0					1.0						
								Сус	cle Ler	gth:	90.0		secs	5
		In	tersec	tion I	Perfo	rmanc	e Summa	ary						
Appr/ La: Lane Gr	ne oup	Adj Flow	Sat Rate	Rat	tios	_	Lane (Group	o App	roach	1			
Grp Ca	pacity	(s)	v/c	g/	С	Delay	LOS	Dela	IY LOS	3			
Eastbound								1						
T, 5	62	180	5	0.81	0.	31	13.6	в						
ш 3 т 2	567	361	0	0.01	0	71	1 2	A	77	Δ				
	507	501		0.10	0.	, <u>+</u>	1.2			11				
Westbound														
т 1	284	361	.0	0.34	0.	36	21.9	С	21.9	C				
NT														
Northbound	C 1	100	-	0 0 0	~	~ ~	10.0	F						
ь 3	рΤ	T80	5	0.96	υ.	∠∪	46.8	D	44.1	D				
R 3 Southbound	89	184	3	0.09	0.	21	16.4	В		_				

Intersection Delay = 19.6 (sec/veh) Intersection LOS = B

HCS2000: Signalized Intersections Release 4.1b

Roger Lindgren Oregon University System

Phone: E-Mail: ____OPERATIONAL ANALYSIS__

Analyst:	Lindgren	
Intersection:	I5 Northramps @W	Wilsonville
Agency/Co.:	Portland State N	University
Area Type:	All other areas	
Date Performed:	12/18/2001	
Jurisdiction:		
Analysis Time Period:	17:00-18:00	
Analysis Year:	1999	
Project ID:		
	East/West Street	North/Sou
Wilsonvil	le Road	SB Ramps of I5

uth Street

	Eas	stboun	ıd	Wes	stbour	ıd	Nor	Northbound			Southbound			
	L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Volume	455	412			433		346		336					
% Heavy Veh	j o	0		i	0		İΟ		0	i				
PHF	1.00	1.00		i	1.00		1.00		1.00	i				
PK 15 Vol Hi Ln Vol	114 	103		ĺ	109		87		84	İ				
% Grade	i	0		l	0			0						
Ideal Sat ParkExist NumPark	1900	1900			1900		1900		1900					
No. Lanes	i 1	2	0	l o	2	0	1	0	1	l o	0	0		
LGConfig	ĹГ	т		i	т		ĹГ		R	i				
Lane Width	3.6	3.6		i	3.6		3.6		3.6	i				
RTOR Vol	İ			i			İ		302	i				
Adj Flow	455	412		İ	433		346		34	İ				
%InSharedLn				l l						ĺ				
Prop LTs		0.00	0	l l	0.00	00				ĺ				
Prop RTs				0.	.000				1.000					
Peds Bikes	İ			j o			j o			0				
Buses	0	0		ĺ	0		0		0	ĺ				

		Eas	stboun	d	We	Westbound			hbo	und	So	und		
		L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Ini Arr Uni I F Los Ext Ped	t Unmet iv. Type t Ext. actor t Time of g Min g	 9.0 3.0 2.0 2.0	0.0 93 3.0 1.000 2.0 2.0		 	0.0 10 3.0 1.000 2.0 2.0 3.2		 0.0 30 2.0 2.0 2.0 2.0).25	0.0 55 3.0 0 1.0 2.0		3.2		-
		1			I									I
						_PHASE	DATA							
Pha	se Combin	natio	n 1	2	3	4			5	б	7	1	8	
ΕB	Left Thru Right Peds		P P	Ρ			NB 	Left Thru Right Peds	P					
WB	Left Thru Right Peds			Ρ			SB 	Left Thru Right Peds						
NB	Right						EB	Right						

____OPERATING PARAMETERS____

SB Right			WB	Right
Green	28.0	32.0		18.0
Yellow	3.0	3.0		3.0
All Red	1.0	1.0		1.0

Cycle Length: 90.0 secs

		7	VOLUM	ie adju	ISTMEN	IT AND	SATU	RATION	FLO	W WORK	SHEET		
Volume Ad	djustn	nent											
		East	tboun	ıd	Wes	tboun	d	Nor	thbo	und	So	uthbo	und
	ļΙ	L	Т	R	L	Т	R	ј L	Т	R	ĹГ	Т	R
											-		
Volume, N	V 45	55 4	412			433		346		336			
PHF	1.	00 1	1.00			1.00		1.00		1.00			
Adj flow	45	5 4	412			433		346		34			Í
No. Lanes	s	1	2	0	0	2	0	1	0	1	0	0	0
Lane grou	up I	L	Т			Т		L		R			Í
Adj flow	45	5 4	412			433		346		34			Í
Prop LTs			0.00	0		0.00	0						Í
Prop RTs	Ì			ĺ	0.	000		ĺ		1.000			Í
Saturatio	on Flo	w Ra	ate (see Ex	hibit	16-7	to d	etermi	ne ti	he adj	ustme	nt fa	ctors)_
	Eastk	ound	f	V	lestbo	und		North	boun	d	So	uthbo	und
LG L	1				т			L		R			
So 190	00 19	900			190	0	1	900		1900			
Lanes 1	2		0	0	2	0	1	0		1	0	0	0
fW 1.0	000 1.	000			1.0	00	1	.000		1.000)		
fHV 1.0	000 1.	000			1.0	00	1	.000		1.000)		
fG 1.0	000 1.	000			1.0	00	1	.000		1.000)		
fP 1.0	000 1.	000			1.0	00	1	.000		1.000)		
fBB 1.0	000 1.	000			1.0	00	1	.000		1.000)		
fA 1.0	00 1	00			1.0	0	1	.00		1.00			
fiii 1 (nn n	95			0 9	5	1	00		1 00			
100 1.0 frr	1	000			1 0	100	-	.00		0 970	*		
	1 A S O 1	000			1 0	100	0	950		0.570			
200 200	у ј 0 т.	000			1.0	00	0	. 950					
Sec. firb 1 (000 1	000			1 0	00	1	000					
LLPD I.(fDrb	JUU I. 1	000			1.0	00	T	.000		1 000			
1 KPD	1. 	1000			1.0	00	1	005		1042			
S 180	05 36	010			361	.0	T	805		1843			
sec.				CAL			TOC M	שווסאמר	ĿШ				
Capacity	Anals	, aia	and	Lane (roun	Canad	ity	JKKSHE	сı				
capacity	Anary	'STS	anu	Adi	noup Ad	li Sat	עטי. רק	- Tw	Gre	en	Lane	Group	
Appr/	Land	<u>`</u>	FLO	w Pate	N Flo	w Pat	0 Pa	Jw Fio	Dat	io Ca	nagit	GI OUP	10
Mumt	Cro		I IO	(17)	: 110	(a)	(17	(a)	lal		(g)	y v Po	tio
HVIIIC	GLOU	ιP		(•)		(5)	(v	/ 5 /	(9/)	C /	(0)	ita	010
Eastbound	3												
Prot.													
Perm													
Left	т.		4	55	1	805	# ∩	25	0	31	562	Ο	81
Prot	-		г		1		17 0	. 25	0.	~ -	502	0.	~ -
Derm													
Thru	Ŧ		л	10	3	610	0	11	0	71	2567	0	16
IIIru Diaht	T		4	14	-	OTO	0	• + +	υ.	/ ⊥	200/	υ.	10
Right	2												
westbound	L												
Prot													
Perm													
Left													
Prot													
Perm													
Thru	т		4	33	3	610	# 0	.12	0.	36	1284	0.	34
Right													
Northbour	nd												
Prot													
Derm													
reru Loft	т.		2	46	1	805	μ ∩	10	0	20	361	0	96
пат г	ц		3	010	T	000	# 0	 エッ 	υ.	∠∪	JUT	υ.	20

H F F R	Prot Perm Thru Right	R	3	4	18	43	0.02	0.	21 3	89	0.09	
Sout F I F F F F F	chbound Prot Perm Left Prot Perm Chru Right			_								
Sum Tota Crit	of flo al lost cical f	w rati time low ra	os for per cy te to	criti cle, L capaci	cal la: = 12. ty rat	ne grou 00 sec io,	ıps, Yc Xc	= 9 = (Yo	3um (v/s 2)(C)/(C) = -L) =	0.56 0.65	
Cont Appr	rol De / Ra	lay an tios	ld LOS Unf	Determ. Prog	inatio Lane	n Increm	nental	Res	Lane G	roup	Appro	ach
Grp	v/c	g/C	d1	Fact	Cap	k	d2	d3	Delay	LOS	Delay	LOS
East L T	bound 0.81 0.16	0.31 0.71	28.5 4.2	0.058 0.242	562 2567	0.50 0.50	12.0 0.1	0.0	13.6 1.2	B A	7.7	A
West	bound											
Т	0.34	0.36	21.2	1.000	1284	0.50	0.7	0.0	21.9	С	21.9	С
Nort L	hbound: 0.96	0.20	35.6	0.875	361	0.50	15.7	0.0	46.8	D	44.3	5
R Sout	0.09 hbound	0.21	28.5	0.570	389	0.50	0.1	0.0	16.4	В	44.1	D
	I	nterse	ction	Delay	= 19.6	(sec/	(veh)	Inter	section	LOS	= B	
				SUPPLE	MENTAL	PERMIT	TED LT	WORKS	SHEET			
Inpu	ıt				for	exclusi	.ve lef	ts				
Cycl Tota Effe Oppo Numk Adju Prop Prop Adju Lost Comp	e leng al actu ective ber of ber of usted L bortion usted o time butatio	th, C al gre permit ffecti lanes lanes T flow of LT of LT pposin for LT n	en tim ted gr ve gre in LT in opp rate, ' in LT ' in op g flow ' lane	e for i een tim en tim lane g osing (VLT (lane g posing rate, group,	LT lan me for roup, 1 approa veh/h) group, flow, Vo (v tL	e group LT lar (s) N ch, No PLT PLTo eh/h)	90.0 p, G (s le grou	sec) p, g(s	EB 2 3)	WB	NB	SB
LT V	volume	per cy	cle, L	TC=VLT	C/3600				0.05	0 05		

Proportion of LT in Di Tahe group, PLT Proportion of LT in opposing flow, PLTo Adjusted opposing flow rate, Vo (veh/h) Lost time for LT lane group, tL Computation LT volume per cycle, LTC=VLTC/3600 Opposing lane util. factor, fLUo 0.95 0.95 Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc) gf=G[exp(- a * (LTC ** b))]-tl, gf<=g Opposing platoon ratio, Rpo (refer Exhibit 16-11) Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0] gq, (see Exhibit C16-4,5,6,7,8) gu=g-gq if gq>=gf, or = g-gf if gq<gf n=Max(gq-gf)/2,0)

PTHo=1-PLTo

 $PL^*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]$ EL1 (refer to Exhibit C16-3) EL2=Max((1-Ptho**n)/Plto, 1.0) fmin=2(1+PL)/g or fmin=2(1+Pl)/g gdiff=max(gq-gf,0) fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00) flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00) or flt=[fm+0.91(N-1)]/N** Left-turn adjustment, fLT For special case of single-lane approach opposed by multilane approach, see text. * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations. ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text. ____SUPPLEMENTAL PERMITTED LT WORKSHEET__ for shared lefts Input EB WB NB SB Cycle length, C 90.0 sec Total actual green time for LT lane group, G (s) Effective permitted green time for LT lane group, g(s) Opposing effective green time, go (s) Number of lanes in LT lane group, N Number of lanes in opposing approach, No Adjusted LT flow rate, VLT (veh/h) Proportion of LT in LT lane group, PLT 0.000 0.000 Proportion of LT in opposing flow, PLTo Adjusted opposing flow rate, Vo (veh/h) Lost time for LT lane group, tL Computation LT volume per cycle, LTC=VLTC/3600 Opposing lane util. factor, fLUo 0.95 0.95 Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc) gf=G[exp(- a * (LTC ** b))]-tl, gf<=g Opposing platoon ratio, Rpo (refer Exhibit 16-11) Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0] gq, (see Exhibit C16-4,5,6,7,8) gu=g-gq if gq>=gf, or = g-gf if gq<gf n=Max(gq-gf)/2,0)PTHo=1-PLTo $PL^*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]$ EL1 (refer to Exhibit C16-3) EL2=Max((1-Ptho**n)/Plto, 1.0) fmin=2(1+PL)/g or fmin=2(1+Pl)/g gdiff=max(gq-gf,0) fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00) flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00) or flt=[fm+0.91(N-1)]/N** Left-turn adjustment, fLT For special case of single-lane approach opposed by multilane approach, see text. * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations. ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gg, see text. SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET_ Permitted Left Turns EΒ WB NB SB Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Pedestrian flow rate, Vpedg (p/h) OCCpedg

Opposing queue clearing green, gq (s) Eff. ped. green consumed by opp. veh. queue, gq/gp OCCpedu Opposing flow rate, Vo (veh/h) OCCr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT Proportion of left turns, PLT Proportion of left turns using protected phase, PLTA Left-turn adjustment, fLpb Permitted Right Turns Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Conflicting bicycle volume, Vbic (bicycles/h) Vpedg OCCpedg Effective green, g (s) Vbicg OCCbicq OCCr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT Proportion right-turns, PRT Proportion right-turns using protected phase, PRTA Right turn adjustment, fRpb SUPPLEMENTAL UNIFORM DELAY WORKSHEET EBLT WBLT NBLT SBLT Cycle length, C 90.0 sec Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, gq Unopposed green interval, gu Red time r=(C-g-gq-gu) Arrival rate, qa=v/(3600(max[X,1.0])) Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XPerm XProt. Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu Residual queue, Qr Uniform Delay, d1 _DELAY/LOS WORKSHEET WITH INITIAL QUEUE_ Initial Dur. Uniform Delay Initial Final Initial Lane Unmet Unmet Appr/ _ Queue Unmet Queue Group

Param. Demand Delay

Q veh

Delay

d3 sec d sec

Eastbound

Lane

Group

Demand Demand Unadj. Adj.

dl sec

u

Q veh t hrs. ds

Westbound

Northbound

Southbound

Inte	sect	ion Delay	19.6	sec/veh	In	terse	ction	LOS	В		
			DACK		יסעמע						
	 E:	astbound	BACK W	of Queue WC	NO.	≞ı rthbo	und	Sc	hh	und	
LaneGroup	Ιт	т	1	т	Iт.		R	1		Juna	1
Init Queue	0.0	0.0		0.0	0.0		0.0	ł			ł
Flow Rate	455	206	i i	216	346		34	ł			1
So	1900	1900	Ì	1900	1900		1900	i			i
No.Lanes	1	2 0	lo	2 0	1	0	1	lo	0	0	ł
SL	1805	1805		1805	1805		1843				ł
 LnCapacity	562	1283		642	361		389	i			ł
Flow Ratio	0.25	0.11	i	0.12	0.19		0.02	i			i
v/c Ratio	0.81	0.16	i	0.34	0.96		0.09	i			i
Grn Ratio	0.31	0.71	i	0.36	0.20		0.21	i			i
I Factor	i	1.000	i	1.000	i	0.25	0	i			i
AT or PVG	96	93	i	10	30		55	i			i
Pltn Ratio	3.05	1.31	i	0.28	1.50		2.61	i			i
PF2	0.20	0.25	i	1.00	0.99		0.59	i			i
Q1	2.0	0.4	i	4.0	8.5		0.4	i			i
kВ	0.8	1.4	i	0.8	0.1		0.1	i			i
Q2	2.7	0.3	i	0.4	1.7		0.0	i			i
Q Average	4.7	0.7	i i	4.4	10.2		0.4	İ			İ
Q Spacing	7.6	7.6	i	7.6	7.6		99.0	i			i
Q Storage	0	0	i i	0	0		0	İ			İ
Q S Ratio								1			
70th Percent	ile (Output:									
fB%	1.2	1.3		1.2	1.2		1.3				
BOQ	5.9	0.9		5.4	12.4		0.5				
QSRatio											
85th Percent	cile (Output:									
fB%	1.5	1.7		1.5	1.4		1.7				
BOQ	7.2	1.1		6.7	14.7		0.7				
QSRatio											
90th Percent	ile (Output:									
fB%	1.7	1.9		1.7	1.6		2.0				
BOQ	8.0	1.3		7.5	16.0		0.8				
QSRatio		_									
95th Percent	tile (Output:									
1B%	2.0	2.5		2.0	11.7		2.5				
BOQ	9.4	1.7		8.8	17.6		1.0	!			-
QSRatio											
98th Percent	ile (Jutput:									
1B% ≂oo	2.3	3.0		2.3	1.9		3.1				
BOQ	110.8	2.1		10.2	119.3		1.3				
QSKAT10			I		I						

____ERROR MESSAGES_____

No errors to report.

hCS2000: Signalized Intersections Release 4.1b

Analyst:	Lindgr	en nd Grat	a Thai		_	Inter.: I5 Southramps @ Wilsonville R Area Type: All other areas Jurisd:								
Agency.	POFLIA	na Stat	e univ	versity	/									
Date.	12/18/2 17·00_1	001 0.001				Vear: 1999								
Project '	17:00-1 TD:	0.00				IEa	L• T	555						
E/W St: V	Wilsonv	ille Ro	ad			N/S St: Interstate 5								
								~~~~~						
	E	la at bour	SI(	JNALIZE Woot	D IN	TERSE	CTION Nor	+ bbou		Southbound				
	<u>п</u>	astboun T	P			P	I T.	T	ן גע.   ק	i   Southbound				
		1	10		1	10		-		Ц	1	IC IC	1	
No. Lanes	s	0 2	0	1	2	0	0	0	0	2	0	1	-¦	
LGConfig	i	Т		L	Т		i		i	L		R	i	
Volume	i	765		504 5	590		i		İ	534		437	İ	
Lane Widt	th	3.6		3.6 3	8.6		İ		Í	3.6		3.6	Ì	
RTOR Vol												350		
Duration	0.2	5	Area 1	Type: A	All o	ther	areas							
				Sigr	nal O	perat	ions							
Phase Cor	mbinati	on 1	2	3	4			5	6	7	8	3		
EB Leit						NB	Leit							
Thru	-		P				Thru Diabt							
RIGIII Deda	L		P				Dede							
WB Left		P				   SB	Left	P						
Thru		P	P				Thru	-						
Right	t					i	Right	Р						
Peds						i	Peds							
NB Right	t					EB	Right							
SB Right	t					WB	Right							
Green		32.0	31.0	0.0				18.0						
Yellow		3.0	0.0					3.0						
All Red		1.0	1.0					1.0						
		Tn	terse	rtion I	Perfo	rmanc	e Summ	Cyc. arv	le Len	gth: 9	90.0	S	ecs	
Appr/ 1	Lane	Adi	Sat	Rat	ios	I Marie	Lane	Group	aaA	roach				
Lane (	Group	Flow	Rate			_		1						
Grp (	Capacit	y (	s)	v/c	g/	С	Delay	LOS	Dela	y LOS				
Eastbound	d													
т	1243	361	0	0.62	0.	34	24.7	С	24.7	C				
-			-					-		-				
Westbound	d		-					_						
L	642	180	5	0.79	0.	36	2.5	A	2 1	-				
.T.	2687	361	0	0.22	0.	74	3.6	A	3.⊥	A				
Northbour	nd													
G														
Southboul	na 700	250	2	0 76	0	20	<b>22</b> 0	C						
Ц	/00	350	4	0./0	υ.	∠∪	33.4	C.	32 K	C				
R	323	161	5	0.27	0.	20	28.7	С		0				
	Intersection Delay = 17.1 (s						h) I	nters	ection	LOS =	= B			

HCS2000: Signalized Intersections Release 4.1b

Roger Lindgren Oregon University System

Phone: E-Mail: ____OPERATIONAL ANALYSIS__

Analyst:	Lindgren	Lindgren								
Intersection:	I5 Southramps @ Wilsonville R									
Agency/Co.:	Portland State University									
Area Type:	All other areas									
Date Performed:	12/18/2001									
Jurisdiction:										
Analysis Time Period:	17:00-18:00									
Analysis Year:	1999									
Project ID:										
Eas	t/West Street	North/South Str	eet							
Wilsonville	Road	Interstate 5								

				7	JOLUME	DATA							
	Fastbound Westbound							Northbound Southbour					I
	L	T	R	L	T T	R		T	R	L	T	R	ļ
Volume		765		504	590					534		437	
% Heavy Veh		0		0	0					0		0	
PHF		1.00		1.00	1.00					1.00		1.00	
PK 15 Vol Hi Ln Vol		192		126 	148					134		110	
% Grade	İ	0		İ	0		İ			İ	0		İ
Ideal Sat		1900		1900	1900		ļ			1900		1900	ļ
NumPark													ł
No. Lanes	0	2	0	1	2	0	0	0	0	2	0	1	
LGConfig		т		L	Т					L		R	
Lane Width		3.6		3.6	3.6					3.6		3.6 350	
Adi Flow		765		504	590					534		87	i.
%InSharedLn							i						i.
Prop LTs		0.00	00	İ	0.00	0	İ			i			İ.
Prop RTs	i			0	.000		i			i		1.000	İ.
Peds Bikes	0			İ			j o			j o			İ.
Buses	i	0		j o	0		i			jo		0	İ.
%InProtPhase	2			ĺ			İ			İ			İ
Duration	0.25		Area 🗅	Гуре:	All c	ther a	areas						<i>.</i>

		Eastbound			Westbound			Northbound			Southbound		
		L	Т	R	Ĺ	Т	R	Ĺ	т	R	L	Т	R
Ini Arr: Uni	t Unmet   iv. Type  t Ext.		0.0 40 3.0		  0.0  100  3.0	0.0 3 3.0		   			  0.0  40  3.0		0.0 30 3.0
I Fa Lost Ext Ped	actor   t Time   of g   Min g		1.000 2.0 2.0 3.2	)	  2.0  2.0	0.250 2.0 2.0		     3	.2		  2.0  2.0 	1.000	)   2.0   2.0   
						_PHASE	DATA						
Pha	se Combin	nation	n 1	2	3	4			5	б	7	8	3
EB	Left Thru Right Peds			P P			NB   	Left Thru Right Peds					
WB	Left Thru Right Peds		P P	Ρ			SB   	Left Thru Right Peds	P P				
NB	Right						EB	Right					

_____OPERATING PARAMETERS__

SB Right				WB	Right
Green Yellow All Red	32.0 3.0 1.0	31.0 0.0 1.0	0.0		18.0 3.0 1.0

Cycle Length: 90.0 secs

	V	OLUME ADJ	JSTMENT AND	SATUF	RATIO	N FLOW W	ORKSHEET		
Volume Adj	ustment								
	East	bound	Westbound	d	No	rthbound	Sout	hbound	
	L	T R	L T	R	L	T R	L	TR	
Volumo V	7								
DUE	/	00					1 00	1 00	
PHF Add flow			11.00 1.00				11.00	1.00	
Adj Llow	1 0	200	504 590		0	0 0	534	0 1	
NO. Lanes	i u	2 0		0	0	0 0			
Lane group		T							
Adj Ilow	1 /	65	504 590	<u> </u>			534	8/	
Prop LTS		0.000		0				1 0 0 0	
Prop RTS	I		0.000	I			I	1.000	
Saturation	Flow Ra	te (see E	xhibit 16-7	to de	eterm	ine the	adjustment	factors)_	
E	astbound	l	Westbound		North	nbound	Sout	hbound	
цĢ	'T'	L	.T.				L	R	
50	TA00	190	n TANO	-		- -	1900	1900	
Lanes 0	2	0 1	2 0	0	(	0 0	2	0 1	_
±₩	1.000	1.0	00 1.000				1.000	1.000	J
fhv	1.000	1.0	00 1.000				1.000	1.000	)
fG	1.000	1.0	00 1.000				1.000	1.000	)
fP	1.000	1.0	00 1.000				1.000	1.000	)
fBB	1.000	1.0	00 1.000				1.000	1.000	)
fA	1.00	1.0	0 1.00				1.00	1.00	
fLU	0.95	1.0	0.95				0.97	1.00	
fRT	1.000		1.000					0.850	)
fLT	1.000	0.9	50 1.000				0.950		
Sec.									
fLpb	1.000	1.0	00 1.000				1.000		
fRpb	1.000		1.000					1.000	)
S	3610	180	5 3610				3502	1615	
sec.		CA	PACITY AND 1	LOS WO	RKSHI	EET			
Capacity A	nalysis	and Lane	Group Capac:	ity					
	-	Adj	Adj Sat	Flo	w	Green	Lane Gi	roup	
Appr/	Lane	Flow Rat	e Flow Rate	e Rat	io	Ratio	Capacity	v/c	
Mvmt	Group	(v)	(s)	(v/	s)	(g/C)	(c)	Ratio	
Eastbound									
Prot									
Perm									
Left									
Prot									
Perm									
Thru	Т	765	3610	# 0.	21	0.34	1243	0.62	
Right									
Westbound									
Prot									
Perm									
Left	L	504	1805	# 0.	28	0.36	642	0.79	
Prot									
Perm									
Thru	Т	590	3610	0.	16	0.74	2687	0.22	
Right									
Northbound	l								
Prot									
Perm									
Left									

P: P( T] R.	rot erm hru ight											
Sout	hbound											
P: D	rot orm											
E E	eim eft I		5	34	35	02 #	0 15	0	20	700	0 76	
P	rot 1	-	5	51	55	02 1	0.15	0.	20	, 00	0.70	
P	erm											
T	hru											
R	ight H	ર	8	7	16	15	0.05	0.	20	323	0.27	
	<u> </u>										0 64	
Sum (	of flow	v rati	os ior	critic	cal la	ne grou	ıps, Yc	= S [.]	um (v/:	3) =	0.64	
Crit	ical f	lowra	per cy te to	capacit	= 9.0 -v rat	io sec	Xc	= (Yc		∼_T.) =	0 72	
CIIC.	icai i.	LOW IA		Capaci	ly iac	10,	AC	- (10	)(C)/(		0.72	
Cont:	rol Del	lay and	d LOS	Determ:	inatio	n						
Appr	/ Rat	cios	Unf	Prog	Lane	Increm	ental	Res	Lane (	Group	Appro	ach
Lane			Del	Adj	Grp	Factor	Del	Del				
Grp	v/c	g/C	d1	Fact	Cap	k	d2	d3	Dela	y LOS	Delay	LOS
Eastl	bound											
-	0 60	0 24	04 F	0 015	1040	0 50	2 2	0 0	04 7	a	04 7	a
1	0.02	0.34	24.5	0.915	1243	0.50	2.5	0.0	24./	C	24./	C
West	bound											
L	0.79	0.36	25.9	0.000	642	0.50	2.5	0.0	2.5	А		
Т	0.22	0.74	3.5	1.000	2687	0.50	0.0	0.0	3.6	A	3.1	A
Nort	hbound											
Sout	hbound	0 00	24.0	0 850	<b>E</b> 0 0	0 50		0 0	22.0	~		
Г	0.76	0.20	34.0	0.750	700	0.50	7.7	0.0	33.2	C	20 C	a
R	0.27	0.20	30.4	0.875	323	0.50	2.0	0.0	28.7	С	32.0	C
										-		
	Ir	nterse	ction	Delay :	= 17.1	(sec/	veh)	Inter	section	n LOS	= B	
Erro	rs exis	st. Se	e bott	om of t	text r	eport.						
					(T)) T(T) > T	DEDUTE		HODICO				
				SUPPLEI	MENTAL	PERMIT	TED LT	WORKS.	HEET			
Tnnui	+				LOL	exclusi	ve tet	LS				
Inpu	L								EB	WB	NB	SB
Cvcl	e lengt	h. C					90.0	sec	22	112	112	52
Tota	l actua	al gre	en tim	e for 1	LT lan	e group	), G (s	)				
Effe	ctive p	permit	ted gr	een tir	me for	LT lan	ie grou	p, g(s	)			
Oppo	sing ef	fecti	ve gre	en time	e, go	(s)						
Numb	er of 1	lanes	in LT	lane gi	roup,	N						
Numb	er of I	lanes	in opp	osing a	approa	ch, No						
Adju	sted L	r flow	rate,	VLT (v	veh/h)							
Prop	ortion	of LT	in LT	lane g	group,	PLT						
Prop	ortion	of LT	in op	posing	flow,	PLTO						
Adju	sted or	pposin	g_tlow	rate,	Vo (v	eh/h)						
LOST	time i	tor LT	Lane	group,	τL							
	alumo r	1 Dor gu		۳⁄1−177 m/	7/2600							
Oppos	oina la	per cy	JIE, L	ator f	2/3000 FT IIO				0 95	0 95		
Oppo	sing id sing f	low W	lla=Vo	C/[360)	lLUU l(No)f	LUOL (w	eh/ln/	ava)	0.95	0.95		
af=C	[exp(-	a * /	LTC **	b))]-+	-1, of	<=a	CII/ 111/	CYC/				
nago	sing p	Latoon	ratio	, Rpo	(refer	Exhibi	t 16-1	1)				
Oppo	sing Ou	ieue R	atio,	qro=Maz	x[1-Rp	o(go/C)	,0]	,				
gq,	(see Ez	khibit	C16-4	,5,6,7	,8)							
gu=g	-gq if	gq>=g	f, or	= g-gf	if gq	<gf< td=""><td></td><td></td><td></td><td></td><td></td><td></td></gf<>						
n=Ma	x(gq-gi	E)/2,0	)									
PTHO	=1-PLTo	C										

 $PL^*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]$ EL1 (refer to Exhibit C16-3) EL2=Max((1-Ptho**n)/Plto, 1.0) fmin=2(1+PL)/g or fmin=2(1+Pl)/g gdiff=max(gq-gf,0) fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00) flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00) or flt=[fm+0.91(N-1)]/N** Left-turn adjustment, fLT For special case of single-lane approach opposed by multilane approach, see text. * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations. ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text. ____SUPPLEMENTAL PERMITTED LT WORKSHEET__ for shared lefts Input EB WB NB SB Cycle length, C 90.0 sec Total actual green time for LT lane group, G (s) Effective permitted green time for LT lane group, g(s) Opposing effective green time, go (s) Number of lanes in LT lane group, N Number of lanes in opposing approach, No Adjusted LT flow rate, VLT (veh/h) Proportion of LT in LT lane group, PLT 0.000 0.000 Proportion of LT in opposing flow, PLTo Adjusted opposing flow rate, Vo (veh/h) Lost time for LT lane group, tL Computation LT volume per cycle, LTC=VLTC/3600 Opposing lane util. factor, fLUo 0.95 0.95 Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc) gf=G[exp(- a * (LTC ** b))]-tl, gf<=g Opposing platoon ratio, Rpo (refer Exhibit 16-11) Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0] gq, (see Exhibit C16-4,5,6,7,8) gu=g-gq if gq>=gf, or = g-gf if gq<gf n=Max(gq-gf)/2,0)PTHo=1-PLTo  $PL^*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]$ EL1 (refer to Exhibit C16-3) EL2=Max((1-Ptho**n)/Plto, 1.0) fmin=2(1+PL)/g or fmin=2(1+Pl)/g gdiff=max(gq-gf,0) fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00) flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00) or flt=[fm+0.91(N-1)]/N** Left-turn adjustment, fLT For special case of single-lane approach opposed by multilane approach, see text. * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations. ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gg, see text. SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET_ Permitted Left Turns EΒ WB NB SB Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Pedestrian flow rate, Vpedg (p/h) OCCpedg

Opposing queue clearing green, gq (s) Eff. ped. green consumed by opp. veh. queue, gq/gp OCCpedu Opposing flow rate, Vo (veh/h) OCCr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT Proportion of left turns, PLT Proportion of left turns using protected phase, PLTA Left-turn adjustment, fLpb Permitted Right Turns Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Conflicting bicycle volume, Vbic (bicycles/h) Vpedg OCCpedg Effective green, g (s) Vbicg OCCbicq OCCr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT Proportion right-turns, PRT Proportion right-turns using protected phase, PRTA Right turn adjustment, fRpb SUPPLEMENTAL UNIFORM DELAY WORKSHEET EBLT WBLT NBLT SBLT Cycle length, C 90.0 sec Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, gq Unopposed green interval, gu Red time r=(C-g-gq-gu) Arrival rate, qa=v/(3600(max[X,1.0])) Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XPerm XProt. Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu Residual queue, Qr Uniform Delay, d1 _DELAY/LOS WORKSHEET WITH INITIAL QUEUE_ Initial Dur. Uniform Delay Initial Final Initial Lane Appr/

Appr/ Unmet Unmet ______ Queue Unmet Queue Group Lane Demand Demand Unadj. Adj. Param. Demand Delay Delay Group Q veh thrs. ds dl sec u Q veh d3 sec d sec

Eastbound

Westbound

Northbound

#### Southbound

Inter	rsection Delay	17.1	sec/veh		Interse	ection	LOS B	
		BACK (	OF OUEUE I	WORK	SHEET			
	Eastbound	- W	estbound		Northbo	ound	Southb	ound
LaneGroup	Т	L	Т				L	R
Init Queue	0.0	0.0	0.0	İ			0.0	0.0
Flow Rate	382	504	295	İ			267	87
So	1900	1900	1900				1900	1900
No.Lanes	0 2 0	1	2 0	0	0	0	2 0	1
SL	1805	1805	1805				1751	1615
LnCapacity	621	642	1343				350	323
Flow Ratio	0.21	0.28	0.16				0.15	0.05
v/c Ratio	0.62	0.79	0.22				0.76	0.27
Grn Ratio	0.34	0.36	0.74				0.20	0.20
I Factor	1.000	1	0.250	Í			1.0	00
AT or PVG	40	100	3	İ			40	30
Pltn Ratio	1.16	2.67	1.00				2.00	1.50
PF2	0.96	0.00	1.00				0.91	0.90
Q1	7.6	0.0	2.3				5.8	1.7
kB	0.8	0.2	0.4				0.5	0.5
Q2	1.3	0.7	0.1				1.5	0.2
Q Average	8.9	0.7	2.4	Í			7.3	1.8
Q Spacing	7.6	7.6	7.6	İ			7.6	7.6
Q Storage	0	0	0	İ			0	0
Q S Ratio		i		İ				Í
70th Percent	ile Output:							
fB%	1.2	1.3	1.3				1.2	1.3
BOQ	10.8	0.9	3.0	Í			8.9	2.3
QSRatio		i		İ				i
85th Percent	ile Output:							
fB%	1.5	1.7	1.6				1.5	1.6
BOQ	12.8	1.2	3.7	İ			10.7	3.0
QSRatio		1		Í				Í
90th Percent	ile Output:							
fB%	1.6	1.9	1.8				1.6	1.8
BOQ	14.0	1.4	4.3				11.8	3.4
QSRatio								
95th Percent	ile Output:							
fB%	1.8	2.5	2.2				1.8	2.3
BOQ	15.7	1.8	5.2	Í			13.4	4.2
QSRatio		i		İ				i
98th Percent	ile Output:						-	
fB%	2.0	3.0	2.6				2.0	2.7
BOQ	17.3	2.2	6.2				15.0	5.1
QSRatio		Ì		İ			İ	Ì

_____ERROR MESSAGES____