Catalog Description: Computational techniques for and applications of the definite and indefinite integrals.

Course Objectives: After completing this course, students will be able to

- 1. Evaluate indefinite and definite integrals.
- 2. Use definite integrals to solve application problems.
- 3. Use various integration techniques to evaluate integrals.
- 4. Communicate mathematical ideas using correct and appropriate notation.

Learning Outcomes and Performance Criteria

1. Apply mathematical concepts and principles to perform computations.

Core Criteria:

- (a) Compute the anti-derivative of a basic form (linear combinations of x^n for any rational n, $\sin x$, $\cos x$ and e^x) without use of formulas or a calculator.
- (b) Compute an anti-derivative like those in (a) but which requires a step of algebraic manipulation prior to integration.
- (c) Compute an anti-derivative using u-substitution.
- (d) Compute an anti-derivative using integration by parts, given the integration by parts formula $\int u \, dv = uv \int v \, du$.
- (e) Compute an anti-derivative using partial fractions, for a quadratic denominator without repeated linear factors.
- (f) Compute an anti-derivative requiring one substitution with a trigonometric identity.
- (g) Transform an integral containing one of the forms $a^2 + x^2$, $a^2 x^2$, $x^2 a^2$ or the square root of any of those into trigonometric form, given the right triangle trigonometric definitions of the trig functions.
- (h) Determine a method that could be successfully used to compute an anti-derivative.
- (i) Solve an initial value problem.
- 2. Understand the theory of definite integrals.

Core Criteria:

- (a) Approximate a definite integral using a finite sum of areas of rectangles.
- (b) Use a graph to determine the value of a definite integral.

Additional Criteria:

- (c) Apply properties of definite integrals to evaluate integrals of arbitrary functions with given definite integrals.
- (d) Express a definite integral as a limit of sums or vice-versa.
- (e) Compute a definite integral using a limit of sums.
- (f) Use the Fundamental Theorem of Calculus to differentiate an integral of the form $\int_a^x f(t) dt$.
- 3. Compute definite integrals; use definite integrals to solve applied problems.

Core Criteria:

- (a) Use the Fundamental Theorem of Calculus to evaluate a definite integral.
- (b) Use a definite integral to find the area between two curves.
- (c) Set up an integral representing the volume of a solid of revolution about a coordinate axis, given the formulas for solids of revolution.
- (d) Set up an integral representing the length of a curve, given the formula.
- (e) Set up an integral representing an amount of work or a hydrostatic pressure.

Additional Criteria:

- (f) Use *u*-substitution to change the variable of integration in a definite integral, including changing the limits of integration.
- (g) Evaluate an improper integral of the form $\int_a^\infty f(x) \, dx$
- (h) Approximate the solution of an applied problem from given data values using some sort of numerical integration.
- (i) For an integral expression representing a physical quantity, give the units of any part of the expression, including the entire integral.
- (j) Set up an integral representing the area of a surface of revolution, given the formula.
- (k) Find the average value of a function in the context of an application.
- (l) Compute the distance traveled and displacement between two times from a velocity function in equation form.